Step of Proof: absval_eq |
12,41 |
|
Inference at *
Iof proof for Lemma absval eq:
x, y:
. (|x| = |y|) 

x =
y
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C)) (first_tok :t) inil_term)))
C1:
C1: 1. x :
C1: 2. y :
C1:
(|x| = |y|) 

x =
y
C.